

Copyright © 2010 Product Arts Author: Don Vendetti Page 1

SaaS – A Product Perspective

Software-as-a-Service (SaaS) is quickly gaining credibility and market share against traditional
packaged software. This presents new opportunities for product groups and also new challenges
to teams used to developing packaged software. This article provides an overview of SaaS, how it
differs from packaged software and specific new areas of focus from an end-to-end product
perspective required to ensure a successful service.

What is SaaS?
SaaS has a broad definition and can mean different things to different people and is one subset of
Cloud services. We’ll start with a definition compared to traditional packaged software. Most
applications today are purchased and installed on computers resident in the buyer’s location,
otherwise known as “on-premise”. For enterprise applications, these are typically server-based
products and enabled to operate across the organization to many users, e.g. Email, CRM, ERP,
Collaboration, etc. The business model is usually to buy a server license upfront, and probably
access licenses for every user who will want to access the server. This can be a significant
upfront cost plus annual maintenance and support fees. This is addition to the cost of the server
hardware and the ongoing cost of IT resources to install, update and maintain the system. The
high price tag usually precluded small and medium businesses from owning these enterprise
applications.

In the late 1990’s, Application Service Providers (ASPs) introduced the concept of moving the
software and servers out of the company and into a 3rd party who paid for the hardware, software
and hosting administration. They then “rented” access to the software on a per-user or usage
basis to customers who saw value in not having to deal with the upfront expense and hassle of
buying it themselves. The concept was one of the big casualties of the DotCom meltdown in
2000, primarily due the high cost of running the service for each customer, many of whom needed
some form of customization for their use of the application. It turned out to be difficult for the
ASPs to make money by just offering the hosting service with traditional software.

About this same time, some enterprising companies were looking at ways to build the software in
a different way to lower the cost of hosting for others. One of the most successful has been
salesforce.com. They helped establish the definition of SaaS as follows:

 The service is hosted for the companies using the service (it is not on-premise software)

 The same software is shared by many users (and is standardized with few customizations)

 Access is over the internet (from the “cloud”), usually with a browser or thin client

 The business model is subscription or pay-per-use

SaaS today is increasingly available for many applications which are competing directly against
traditional on-premise versions. While they are primarily in the B2B market, SaaS is also coming
on strong in the B2C space for products like Personal Finance Management and Online Backup.
Gartner estimates an 18% growth in the SaaS market in 2010 to $7.5B worldwide.

SaaS –A Product Perspective Copyright © 2010 Product Arts Page 2

SaaS Architectures
There are a few different architectures that are important to understand for SaaS offerings, as the
implementations directly drive the cost model, but also merit consideration for individual
strengths and weaknesses in various situations. The three architectures presented are Dedicated
Single Tenant, Virtualized Single Tenant and Multitenant. Hybrids are also possible.

Figure 1 represents a Dedicated Single Tenant architecture. Each
customer has a dedicated set of hardware for the three layers of web
interface, application and database. The software running on each set
of hardware can be the same, or there can be customizations at each
layer. As new customers are added, a new set of hardware must be
deployed. The benefits of this architecture is the relative ease to
deploy a legacy application, the ability to provide some
customizations to each customer, and the isolation of data in security
or privacy conscious environments. The downside is much higher
cost. This is the configuration used by the original ASPs, so the extra
hardware and administration costs can be significant. Deploying and
upgrading requires each customer to be done individually.

Figure 2 depicts a Virtualized Single Tenant architecture. It is similar
to Figure 1 in that each customers has their own dedicated software
instance, but in this case they are running on a shared set of
hardware. This is implemented by using a more powerful hardware
platform than required for the individual Single Tenant
implementations, plus the addition of virtualization software (such as
VMWare) that enables the target software to think it has its own
hardware. The advantage of this is much lower setup cost than the
Dedicated scenario while preserving the customization and isolation
capabilities. The disadvantage is scalability, as there is processing
cost to the VM software that makes the system less efficient and
scaling the architecture is more complex. Deploying and upgrading
customers remains an individual customer task.

Figure 3 depicts a Multitenant architecture. All customers are using
the same set of software deployed on scalable sets of hardware. A
load balancer allocates users across the hardware sets. The
advantage to this architecture is cost and massive scalability, plus the
ease of adding a new customer. During an upgrade, all customers
are upgraded at once and can be done in minutes. The downside is
the application must be written to work in a multitenant
environment for administering multiple customer sets and
maintaining the data integrity across all customers. In addition,
there are few, if any, customization options per customer, and each is
limited to a predetermined set of options through configuration
methods. Multitenancy is considered by some as the only “true” SaaS
configuration due to cost and scalability, however, different customer
needs, their willingness to pay, time to market and lifecycle stage of
the market could enable any of the architectures.

Figure 1 - Dedicated Single
Tenant Architecture

Web Server

Database

Application

Web Server

Application

Database

Virtualized
Instance

Virtualized
Instance

Customer 1 Customer 2

Shared Hardware

Figure 2 - Virtualized Single
Tenant Architecture

Web Server

Application

Database

Scalable Hardware

Customer 1 Customer 2

Load Balancer

Figure 3 - Multitenant
Architecture

SaaS –A Product Perspective Copyright © 2010 Product Arts Page 3

How SaaS Differs
As mentioned, product teams used to delivering products for on-premise applications have
several new issues to contend with for SaaS applications. These can affect the product
requirements, the operational systems and processes, the business case, or some of each. The
following highlights some of those challenges.

Issue Discussion

Security &
Privacy

Along with hosting the application, you have your customer’s data. Your system and all
operational processes need to be robust to protect it. The perception of security is
considered the biggest hindrance to the adoption of SaaS for many companies.
Questions your customers will have are: How is data transferred/transmitted, how is it
stored, where is it stored, how is it backed up and archived, who has access, who
controls access, etc. Especially in a multitenant environment, all customer data is likely
comingled and this raises questions of privacy. You customers will want to know:
How do you keep customers separate, how do you know access my data is protected,
who has access, who controls access, etc.

Besides designing a robust system, you’ll also benefit from transparency with customers
about answers to their questions. These can be in the form of whitepapers or
specifically in your sales presentation backup material.

Purchasing &
Billing

For an on-premise solution, purchasing is usually done in one-time purchased blocks of
licenses paid in advance. This can be accomplished via a shopping cart approach, or
even manual invoices through direct sales. Maintenance is usually an annual invoice.
For SaaS, purchasing can be on-demand for any number of users, and can also be
cancelled for any number on-demand. This requires a tighter coupling between the
purchasing and operational systems to ensure users are activated and deactivated from
the service in a timely manner. Billing is typically monthly.

Admin &
Configuration

On-premise solutions provide full administrative control of the application and users.
Once the application is moved to SaaS, administrators still expect full control; however,
the standardized product will likely be much more restricted as to the controls that will
be available. Instead, a limited set of configurations of the system are typically
provided in addition to managing users, at least to some rudimentary level. Choosing
the right controls and configurations to satisfy the majority of customers will be
required to minimize the development and operational costs of the system. There will
also need to be some process for handling unique customer requests not addressed by
the standard platform.

Upgrades Upgrades are conceptually one of the benefits of SasS, as you just do it en masse with
the same release to all customers. It could also be one of the larger pains, both for you
and for your customer. If your product is tied into their major business processes,
advance notifications and potentially even training customers will be required before
upgrading, and they will have to be ready with process changes on their end before the
flip of the switch. If you’ve made large changes in the update, especially in database
structures, you may also need to do a database migration of potentially a large amount
of data. The planning and logistics of this can encompass a project nearly as large as
the feature development itself, especially if minimal downtime is a requirement for
customers.

Service Level
Agreements
(SLAs)

For on-premise software, the system is kept running by the IT department who
responds to each issue that arises, with varying degrees of response. For SaaS, your
customers will expect your service to always be available, on demand. Defining
“always available” for your service is accomplished through your SLA, usually provided
as part of your Terms & Conditions or contractually. It usually contains some level of

SaaS –A Product Perspective Copyright © 2010 Product Arts Page 4

Issue Discussion

availability of the system (i.e. 99.9%) over some timeframe with a definition of how it is
calculated and makes available exemptions for normal system maintenance and
updates.

You will probably also have a Support SLA that defines how responsive you’ll be to
fixing various classes of issues. Both of these may provide a financial penalty in the
form of a credit back to your customers if you fall below the stated levels. These
agreements are a party for lawyers to create. They also require your operations team to
have the ability to monitor and quickly respond to issues, as the clock is always ticking
during downtime. Because of the potential financial hit to revenue, expect your execs
to have a high degree of interest in a real-time dashboard of your availability and
support response.

Reporting For on-premise systems, your customers usually have the ability to generate some level
of reports, or potentially look into logs, to extract information out of the system. The
more the system is tied into financial or operational systems of your customers, the
more important this is and may even be required by SAS70. Your SaaS system will need
to provide similar capabilities and this can often be a challenge. You either need to
provide a set number of canned reports that addresses everyone’s need (and which is
unlikely for all, so plan for custom reports too) or you can provide access to the data
and use reporting tools to let customers do their own thing. For a large amount of
data, providing these capabilities and ongoing processing will effectively turn into a
separate product by itself, and a costly one as the data set grows.

The other interesting set of data accessible to you in SaaS is customer usage
information. For on-premise systems, getting information out about how your
customers use your product is difficult, if not impossible, as the system is sitting behind
their firewall. In SaaS, you can get whatever you want to track, but like the customer
reports above, comes at a cost to processing, storage and possibly real-time
performance.

External
Integrations

Some customers may have need to interface with data or applications still resident on-
premise. This could be for a different application, or perhaps it could be to the same
app split between on-premise and in-the-cloud for different sets of users. Providing
APIs and documentation to customers could enable them to provide their own custom
integrations to extend the functionality of your system. Additionally, some
applications may benefit by the ability to have 3

rd
 party integrations to other cloud

applications, with customers able to create their own mash-ups.

Trials Providing a free trial for on-premise software is possible, however, the implementation
is usually messy if it isn’t hosted for the customer. They need to download and install
the software, configure it, and then enable it for specific users to test. For SaaS,
adding trial customers into the system is usually pretty easy, but you do have to
account for the trial mode (or a dedicated platform) and trial expiration and may also
want to disable specific features, limit number of users, etc. Depending on your
architecture, you may also have a customer migration event to contend with off the
trial platform and onto a commercial platform if they continue purchasing.

Offline Access Almost by definition, SaaS involves a browser or thin client, so if you are not connected
to the internet, then you have no access to the application. This does not have to be a
rule and some applications require operation while disconnected, especially in mobile
environments. This can be enabled with a hybrid scenario of SaaS in the cloud and an
intelligent client on the access device. The most common example of this is email,
where the email servers can be in the cloud with a full email client residing on the
device. The client maintains a local database that is synced to the cloud when

SaaS –A Product Perspective Copyright © 2010 Product Arts Page 5

Issue Discussion

connected, but is also available for offline use if the cloud is temporarily unavailable.
This can present a much better user experience, but of course, this is much more
complex to develop and manage.

Testing
Environments

The ease of updating the application, especially in a multitenant environment, makes it
especially important to be able to do full testing in an environment that mirrors what is
in production. If your upgrade fails for some reason, all customers are affected, and it
is very easy to have a failure due to a configuration differences between the testing and
production environments. This can be a large cost required to replicate the production
environment, but the business case comes from the savings incurred from SLA
violations and hard-to-quantify brand reputation if outages are common.

Customer
Service

Customer Service and Tech Support for on-premise software can often be handled by
VARs or other channel partners as the first tiers to customers. For SaaS, the vendor
takes on the brunt of the customer support activities from tier 1 to tier n, and requires a
responsive and deep organization. In effect, your organization will need to turn from a
primarily development-focused team to an operationally-focused team. This will
require multiple levels of support, reaching from front line support reps all the way into
the development team, to be able to respond to operational and application issues and
questions on a regular basis. This may be one of the biggest cultural changes (and
shocks) required in moving from being a traditional software vendor to an SaaS
provider.

Solution sale
vs. Product
sale

Similar to Customer Support, the focus from a sales perspective for SaaS needs to be on
the entire solution being offered and over the lifecycle of the product. The biggest
effort may no longer be in getting the initial sale for on-premise software that then
disappears into an organization. The customer is buying a partner that they will
interact with and be dependent on for the life of the product. Sales tools will be
required to quantify the ROI, in addition to published documents and product
roadmaps to address many of the questions that have been posed in the preceding
issues list.

Summary
Software-as-a-Service is quickly becoming major player in both the B2B and B2C markets and can
provide some significant benefits to customers. It can also present significant challenges in
product design, operations and company culture to deliver them effectively. This article has
provided a discussion of many of the different issues that will be encountered by traditional
product teams in delivering an end-to-end service. For additional reading:

SaaS Defined & Resources
Gartner Forecast
Multitenant Architectures

About Product Arts
Product Arts specializes in Product Management consulting and training. Our consulting
consists of product strategy and planning, market performance improvements and processes for
creating and delivering products. Our training includes public and private custom training for
product management and associated staff. For more information, go to www.product-arts.com
or email info@product-arts.com.

http://searchcloudcomputing.techtarget.com/sDefinition/0,,sid201_gci1170781,00.html
http://www.informationweek.com/news/services/saas/showArticle.jhtml?articleID=221600849
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://www.product-arts.com/
mailto:info@product-arts.com

